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Abstract. A global next-to-leading order QCD analysis of unpolarized and polarized deep-inelastic scatter-
ing data is performed with parton distributions constructed in a statistical physical picture of the nucleon.
The chiral properties of QCD lead to strong relations between quarks and antiquarks distributions and the
importance of the Pauli exclusion principle is also emphasized. We obtain a good description, in a broad
range of x and Q2, of all measured structure functions in terms of very few free parameters. We stress the
fact that at RHIC-BNL the ratio of the unpolarized cross sections for the production of W+ and W − in
pp collisions will directly probe the behavior of the d̄(x)/ū(x) ratio for x ≥ 0.2, a definite and important
test for the statistical model. Finally, we give specific predictions for various helicity asymmetries for the
W ±, Z production in pp collisions at high energies, which will be measured with forthcoming experiments
at RHIC-BNL and which are sensitive tests of the statistical model for ∆ū(x) and ∆d̄(x).

1 Introduction

Deep-inelastic scattering (DIS) of leptons on hadrons has
been extensively studied, over the last twenty years or
so, both theoretically and experimentally. The principal
goals of this physics program were, first, to elucidate the
internal proton structure, in terms of parton distributions,
and more recently to test perturbative quantum chromo-
dynamics (QCD), which generalizes the parton model.
For the unpolarized structure functions, the advent of the
HERA physics program gives us access to a broader kine-
matic range than fixed targets experiments, in x down
to a few 10−5 and in Q2 up to several 104 GeV2, which
allows for testing perturbative QCD to next-to-leading
order (NLO). As a result, the unpolarized light quarks
(u, d) distributions are fairly well determined. Moreover,
the data exhibit clear evidence for a flavor-asymmetric
light sea, i.e. d̄ > ū, which can be understood in terms
of the Pauli exclusion principle, based on the fact that
the proton contains two u quarks and only one d quark
[1]. Larger uncertainties still persist for the gluon (G) and
the heavy quarks’ (s, c) distributions. From the more re-
stricted amount of data on polarized structure functions,
the corresponding polarized gluon and s quark distribu-
tions (∆G,∆s) are badly constrained and we just begin
to uncover a flavor asymmetry, for the corresponding po-
larized light sea, namely ∆ū �= ∆d̄. Whereas the signs of
the polarized light quarks distributions are essentially well
established, ∆u > 0 and ∆d < 0, this is not the case for
∆ū and ∆d̄. The objective of this paper is to construct
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a complete set of polarized parton (all flavor quarks, an-
tiquarks and gluon) distributions; and, in particular, we
will try to clarify this last point on the polarized light sea.

The polarized parton distributions (PPD) of the nu-
cleon have been extensively studied in the last few years
[2,3] and in most models, the PPD are constructed from a
set of unpolarized parton distributions, previously deter-
mined, from unpolarized DIS data. For example for each
quark flavor qi(x), the corresponding ∆qi(x) is taken (at
the input energy scale) such that

∆qi(x) = ai(x) · qi(x), (1)

where ai(x) is a simple polynomial which has to be de-
termined from the polarized DIS data. A similar proce-
dure is used for antiquarks and gluons. As a result, the
full determination of all unpolarized and polarized parton
distributions involves a large number of free parameters,
say around 20–25, which obviously shows lack of simplic-
ity. In addition, most of these models do not provide a
flavor separation [4] for the antiquarks q̄i(x) and conse-
quently for ∆q̄i(x). However, there are recent attempts
to make this flavor separation, either using semi-inclusive
polarized DIS data [5] or by means of a flavor-symmetry
breaking [6]. Our motivation for this work is to use the
statistical approach to build up qi, ∆qi, q̄i, ∆q̄i, G and
∆G, by means of a very small number of free parameters.
A flavor separation for the unpolarized and polarized light
sea is automatically achieved in a way dictated by our ap-
proach.

This paper is organized as follows. In Sect. 2, we re-
view the main points of our approach and we describe our
method to determine the free parameters of the PPD with
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the set of experimental data we have used. In Sect. 3, we
show the results obtained for the unpolarized DIS struc-
ture functions F p,d

2 (x,Q2) and xF νN
3 (x,Q2) in a wide

kinematic range, compared with the world data. We show
the prediction of the ratio of unpolarized W+ and W−
cross section at RHIC-BNL, which is sensitive to the
d̄(x)/ū(x) ratio, a challenging question for the statistical
approach. Section 4 is devoted to the polarized DIS struc-
ture functions gp,d,n

1 (x,Q2). In Sect. 5, we give our predic-
tions for single and double helicity asymmetries for the
heavy gauge boson production (W±, Z) in pp collisions at
high energies, which are sensitive to ∆ū and ∆d̄ and will
be tested with forthcoming experiments at RHIC-BNL.
We give our concluding remarks in Sect. 6.

2 Basic procedure for the construction
of the PPD in the statistical approach

In the statistical approach the nucleon is viewed as a gas of
massless partons (quarks, antiquarks, gluons) in equilib-
rium at a given temperature in a finite size volume. Like
in our earlier works on the subject [7–9], we propose to
use a simple description of the parton distributions p(x),
at an input energy scale Q2

0, proportional to

[exp[(x − X0p)/x̄] ± 1]−1; (2)

the plus sign for quarks and antiquarks corresponds to a
Fermi–Dirac distribution and the minus sign for gluons
corresponds to a Bose–Einstein distribution. Here X0p is
a constant which plays the role of the thermodynamical
potential of the parton p and x̄ is the universal tempera-
ture, which is the same for all partons. Since quarks carry
a spin 1/2, it is natural to assume that the basic distribu-
tions are q±

i (x), corresponding to a quark of flavor i and
helicity parallel or antiparallel to the nucleon helicity. This
is the way we will proceed. Clearly one has qi = q+

i + q−
i

and ∆qi = q+
i − q−

i and similarly for antiquarks and glu-
ons.

We want to recall that the statistical model of the nu-
cleon has been extensively studied in early and more re-
cent papers [10,11], but in these works, at variance with
our approach, the statistical picture is first considered
in the nucleon rest frame, which is then boosted to the
infinite-momentum frame.

From the chiral structure of QCD, we have two im-
portant properties which allow one to relate quark and
antiquark distributions and to restrict the gluon distribu-
tion [9,11].

(1) The potential of a quark qh
i of helicity h is opposite

to the potential of the corresponding antiquark q̄−h
i of

helicity −h:

Xh
0q = −X−h

0q̄ . (3)

(2) The potential of the gluon G is zero:

X0G = 0. (4)

From the well-established features of the u and d quark
distributions extracted from DIS data, we anticipate some
simple relations between the potentials:

(1) u(x) dominates over d(x), therefore one can expect
X+

0u +X−
0u > X+

0d +X−
0d;

(2) ∆u(x) > 0, therefore X+
0u > X−

0u;
(3) ∆d(x) < 0, therefore X−

0d > X+
0d.

So we expect X+
0u to be the largest thermodynamical

potential and X+
0d the smallest one. In fact, as we will see

from the discussion below, we have the following ordering:

X+
0u > X−

0d ∼ X−
0u > X+

0d. (5)

Equation (5) is consistent with the previous determina-
tions of the potentials [7], including the one with dimen-
sional values in the rest system [11]. By using (3), this or-
dering leads immediately to some important consequences
for antiquarks, namely

(i) d̄(x) > ū(x), the flavor-symmetry breaking which
also follows from the Pauli exclusion principle, as
recalled above. This was already confirmed by the
violation of the Gottfried sum rule [12,13].

(ii) ∆ū(x) > 0 and ∆d̄(x) < 0, which remain to be
checked and this will be done in hadronic collisions
at RHIC-BNL (see Sect. 6).

Note that since ū+(x) ∼ d̄+(x), we have

∆ū(x) − ∆d̄(x) ∼ d̄(x) − ū(x), (6)

so the flavor-symmetry breaking is almost the same for
unpolarized and polarized distributions.

Let us now come back to the ordering in (5) and justify
it. We consider the isovector contributions to the structure
functions g1 and F2, which are the differences on proton
and neutron targets. In the QCD parton model they read

2xg(p−n)
1 (x,Q2) =

1
3
x
[
(∆u+∆ū)(x,Q2)

−(∆d+∆d̄)(x,Q2)
]

⊗ ∆CNS(x,Q2), (7)

and

F
(p−n)
2 (x,Q2) =

1
3
x
[
(u+ ū)(x,Q2)

−(d+ d̄)(x,Q2)
]

⊗ CNS(x,Q2), (8)

where ∆CNS(x,Q2) and CNS(x,Q2) denote the spin-
dependent and spin-independent perturbative QCD coeffi-
cients [2]. Since they differ only in a non-negligible way for
very small x, say x ≤ 0.05, we see that 2xg(p−n)

1 −F
(p−n)
2

is only sensitive to the helicity minus components of the
u and d quark distributions, so we get

[
2xg(p−n)

1 − F
(p−n)
2

]
(x,Q2) ∼ −2

3

[
(u− − d−)(x,Q2)

−(ū− − d̄−)(x,Q2)
]

⊗ CNS(x,Q2). (9)
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Fig. 1. The isovector structure functions 2xg
(p−n)
1 (x) and

F
(p−n)
2 (x). Data are taken from [13,15]

At this stage it is instructive to look at the available
data shown in Fig. 1. We notice that these two functions
have very similar shapes and their difference is small and
mainly positive, except perhaps for large x. In order to try
to identify the origin of this experimental fact, let us look
at the integrals of these functions divided by x. The first
one is twice the Bjorken sum rule [14], for which the best
world estimate is IBj = 0.176± 0.005± 0.007 [15] and the
second one is the Gottfried sum rule [12] whose value is
IG = 0.235± 0.026 [13]. As a result using (9) one obtains,
say for Q2 = 5GeV2,

∫ 1

0
dx

[
(d−(x) − u−(x)) + (d̄−(x) − ū−(x))

]

= 0.175 ± 0.06. (10)

Now from the NMC result on the Gottfried sum rule one
has ∫ 1

0
dx

[
d̄(x) − ū(x)

]
= 0.16 ± 0.03. (11)

By comparing these two results we can assume, to a good
approximation, the following relation for the helicity mi-
nus distributions

d−(x) = u−(x). (12)

It follows from our procedure to construct antiquark dis-
tributions from quark distributions described above (see
(3)) that we automatically have for the helicity plus anti-
quark distributions

d̄+(x) = ū+(x), (13)

which makes (10) and (11) perfectly compatible. Indeed,
as we will see below, (12) is rather well satisfied in the
final determination of the distributions, after fitting the
data.

Let us now complete the description of our para-
metrization. As stated above, the essential ingredient for
quarks and antiquarks is a Fermi–Dirac distribution, as
shown in (2), but we expect this piece to die out in the
small x region, so we have to multiply it by a factor
AXh

0qx
b, where b > 0. In addition to A, a flavor and

helicity-independent normalization constant, we have in-
troduced the factor Xh

0q which is needed to get a good
description of the data. It is not required by the simple
Fermi–Dirac expression but, due to the ordering in (5),
it will secure the correlation between the shape of a given
distribution and its first moment [7,16]. It is also in agree-
ment with what has been found from data for the second
and third moments of the valence partons [17]. The small
x region is characterized by a rapid rise as x → 0 of the
distribution, which should be dominated by a universal
diffractive term, flavor and helicity independent, coming
from the pomeron universality. Therefore we must add a
term of the form Ãxb̃/[exp(x/x̄)+1], where b̃ < 0 and Ã is
a normalization constant. So for the light quarks q = u, d
of helicity h = ±, at the input energy scale Q2

0 = 4GeV2,
we take

xqh(x,Q2
0) =

AXh
0qx

b

exp[(x − Xh
0q)/x̄] + 1

+
Ãxb̃

exp(x/x̄) + 1
,

(14)

and similarly for the light antiquarks

xq̄h(x,Q2
0) =

Ā(X−h
0q )−1x2b

exp[(x+X−h
0q )/x̄] + 1

+
Ãxb̃

exp(x/x̄) + 1
.

(15)

Here we take 2b for the power of x and not b as for quarks,
an assumption we will try to justify later. For the strange
quarks and antiquarks, s and s̄, given our poor knowledge
on both unpolarized and polarized distributions, we take
the particular choice

xs(x,Q2
0) = xs̄(x,Q2

0) =
1
4

[
xū(x,Q2

0) + xd̄(x,Q2
0)

]
,

(16)

and

x∆s(x,Q2
0) = x∆s̄(x,Q2

0)

=
1
3

[
x∆d̄(x,Q2

0) − x∆ū(x,Q2
0)

]
. (17)

This particular choice gives rise to a large negative ∆s(x,
Q2

0) and we will come back to it below, in the discussion of
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Fig. 2. The Fermi–Dirac functions for quarks F h
q = Xh

0q/

(exp[(x − Xh
0q)/x̄] + 1) at the input energy scale Q2

0 = 4GeV2,
as a function of x

our results (see Sect. 4). The charm quarks c, both unpo-
larized and polarized, are set to zero at Q2

0 = 4GeV2.
Finally, concerning the gluon distribution, as indicated
above, we use the Bose–Einstein expression

xG(x,Q2
0) =

AGxbG

exp(x/x̄) − 1
, (18)

with a vanishing potential and the same temperature x̄.
This choice is consistent with the idea that hadrons, in the
DIS regime, are black body cavities for the color fields. It is
also reasonable to assume that for very small x, xG(x,Q2

0)
has the same behavior as xq̄(x,Q2

0), so we will take bG =
1+ b̃. Since the normalization constant AG is determined
from the momentum sum rule, our gluon distribution has
no free parameter. For the sake of completeness, we also
need to specify the polarized gluon distribution and we
take the particular choice

x∆G(x,Q2
0) = 0, (19)

consistent with (4). As usual, the valence contributions
are defined as qval = q − q̄, so A and Ā are determined
using the normalization of uval(x) and dval(x), whose first
moments are respectively 2 and 1.

To summarize, our parametrization involves a total of
eight free parameters

x̄, X+
0u, X

−
0u, X

−
0d, X

+
0d, b, b̃ and Ã. (20)

In order to determine these parameters, we use a fitting
procedure on a selection of 233 data points at Q2 values,
as close as possible to our input energy scale Q2

0 = 4GeV2,
and the χ2 value we obtain is 322. For unpolarized DIS, we
have considered F p

2 (x,Q
2) from NMC, BCDMS, E665 and

ZEUS, F d
2 (x,Q

2) from NMC, E665 and xF νN
3 (x,Q2) from

Fig. 3. The Fermi–Dirac functions for antiquarks F h
q̄ = 1/

Xh
0q̄(exp[(x + Xh

0q̄)/x̄] + 1) at the input energy scale Q2
0 =

4GeV2, as a function of x

CCFR [13,18–28]. For polarized DIS we have considered
gp,d,n
1 (x,Q2) from SMC, E154 and E155 [15,29,30]. The
average χ2 per point is 1.38, which is not impressive, but
one has to keep in mind that we have greatly restricted
the number of free parameters by means of our underlying
physical picture. To get a better feeling on the distribution
of this χ2, let us give some details on our results. We find
a χ2/pt of 0.5 for the NMC data on F p

2 and F d
2 , whereas

it is 1.5 for the ZEUS data on F p
2 and CCFR data on

xF3. For the polarized structure functions, the combined
E155 and SMC data for gp

1 lead to χ2/pt = 2.5, whereas
it is only 0.85, for gn

1 with the E154 and SMC combined
data. The five free parameters, one temperature and four
potentials, which determine the Fermi–Dirac functions at
the input energy scale Q2

0 = 4GeV2 are

x̄ = 0.09907, X+
0u = 0.46128, X−

0u = 0.29766,

X−
0d = 0.30174 and X+

0d = 0.22775. (21)

From the above discussion, which led us to (12) and (13),
we observe that the fit yields X−

0u ∼ X−
0d, in agreement

with our expectations. We show in Figs. 2 and 3 the Fermi–
Dirac functions (2) for light quarks and antiquarks, re-
spectively. They exhibit a flat behavior in the small x
region, at variance with the rising trend of the parton dis-
tributions, which ought to be described by the universal
diffractive term (see (14) and (15)). It is also interesting
to make one more observation from the above values of
these potentials. It turns out that if we impose the fol-
lowing simple relations: X−

0d = X−
0u, X

+
0u = 3/2X−

0u and
X+

0d = 3/4X−
0u, we can get an equally good fit of the data

with X−
0u = 0.30549. This choice reduces the number of

free parameters for the potentials from four to one, but
we cannot justify it and it might be fortuitous.
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Fig. 4. The different helicity components of the light quark dis-
tributions after NLO evolution, at Q2 = 20GeV2, as a function
of x

Fig. 5. The different helicity components of the light anti-
quark distributions after NLO evolution, at Q2 = 20GeV2, as
a function of x

For the remaining three free parameters b, b̃ and Ã, the
fit gives the values

b = 0.40962, b̃ = −0.25347 and Ã = 0.08318. (22)

Finally the parameters A, Ā and AG, determined by nor-
malization conditions and the momentum sum rule, have
the following values:

A = 1.74938, Ā = 1.90801 and AG = 14.27535. (23)

We show in Figs. 4 and 5 the different helicity compo-
nents of the light quarks and antiquarks, respectively, at

Fig. 6. The different unpolarized parton distributions (f = u,
d, ū, d̄, s, c and G) after NLO evolution, at Q2 = 20GeV2, as
a function of x

Q2 = 20GeV2, after an NLO evolution. They all have
the same rising behavior in the small x region, which is
driven by the universal diffractive term. We note that af-
ter NLO evolution, we still have u− ∼ d− and ū+ ∼ d̄+.
In Fig. 6, we display the x-shapes of the full set of unpo-
larized parton distributions, where one sees a non-zero c
quark distribution generated by the Q2 evolution. Note
that u− ∼ d− implies

u(x) − d(x) ∼ ∆u(x) − ∆d(x) (24)

at least up to Q2 ∼ 20GeV2. This is a specific feature
of our quark distributions, which is not fulfilled in most
parametrizations [3]. In order to compute the evolved dis-
tributions, we have used the following method: all parton
distributions and splitting functions are decomposed in
terms of Chebyshev polynomials, then the DGLAP equa-
tions at NLO are solved by a Runge–Kutta method [31]
or by a semianalytic method [32]. The renormalization
scheme adopted is MS with ΛMS[nf = 3] = 300MeV and
we also use the MS factorization scheme in defining the
NLO relation between the parton distributions and the
structure functions1. We have checked that both meth-
ods are consistent, within the numerical accuracy. All the
results shown in the figures are calculated at NLO.

Let us now comment on the values obtained for some
of these parameters. First, it is interesting to note that
A and Ā, the normalizations of quarks and antiquarks,
come close to each other. Next, concerning the power of
x for which we took b for the quarks and 2b for the an-
tiquarks, let us try to understand this fact and the value

1 However, we could have chosen another scheme with the
same functional forms for the parton distributions, which
would have led to slightly different values of the fitted param-
eters
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Fig. 7. F p
2 (x, Q2) as a function of Q2 for fixed x, E665 data

[22]. The function c(xi) = 0.6(19 − i), i = 1 corresponds to
x = 8.9 × 10−4

of b. The universal diffractive term, involving b̃ and Ã,
is absent in the physical quantity xd̄(x) − xū(x), which
was extracted recently in [33] (see Sect. 3 for further com-
ments on these data). This quantity rises in the region
0.01 ≤ x ≤ 0.2, whereas the antiquark Fermi–Dirac func-
tions decrease (see Fig. 3). This increasing behavior is sim-
ply obtained if one multiplies these functions by x0.8. An-
other physical quantity which does not contain the univer-
sal diffractive term is xF νN

3 (x), because it involves the dif-
ference qi(x)− q̄i(x). In the region 0.01 ≤ x ≤ 0.2, quarks
dominate over antiquarks (see Fig. 6) and we know that
xF νN

3 (x) rises. This behavior is obtained if one multiplies
the quark Fermi–Dirac function by x0.4, in agreement with
(22).

In the next section we will compare our calculations
obtained using these parton distributions, with the ex-
isting experimental world data, for the unpolarized DIS
structure functions F p,d

2 (x,Q2) and xF νN
3 (x,Q2), in a

wide kinematic range. We will also show the prediction
of the ratio of unpolarized W+ and W− cross sections at
RHIC-BNL, which is sensitive to the d̄(x)/ū(x) ratio, a
challenging question for the statistical approach.

3 Experimental tests for unpolarized DIS

We first consider µp and ep DIS for which several experi-
ments have yielded a large number of data points on the
structure function F p

2 (x,Q
2). We have compared our cal-

Fig. 8. F p
2 (x, Q2) as a function of Q2 for fixed x, H1 data [34,

35]. The function c(xi) = 0.6(19 − i), i = 1 corresponds to
x = 1.78 × 10−4

culations with fixed target measurements NMC, BCDMS
and E665, which cover a rather limited kinematic region
in Q2 and also with the data at HERA from the H1 and
ZEUS Collaborations. These last data cover a very large
Q2 range, up to Q2 = 104 GeV2 or so and probe the very
low x region which is dominated by the rising behavior of
the universal diffractive term.

The comparison of our results with the data is shown
in Figs. 7, 8, 9 and 10. We notice in Fig. 7 that the very low
Q2 range accessible by E665 requires a downwards Q2 evo-
lution which is achieved successfully down to Q2 = 1GeV2

or so, but we fail to reproduce the data much below than
that. The H1 and ZEUS data are fairly well described as
shown in Figs. 8 and 9, respectively. Finally, we present
a compilation of the data, including NMC and BCDMS,
in Fig. 10 which is in very good agreement with our theo-
retical curves. From measurements over a large Q2 range,
it is possible to improve the determination of the gluon
density by analyzing the scaling violations. On Fig. 11 we
see that xG(x,Q2) exhibits a fast rising behavior in the
low x region, which is fairly consistent with our simple
parametrization (see (18)). Note that xG(x,Q2) is pre-
dicted to increase with Q2 as shown in the figure. Next
we consider F d

2 (x,Q
2) obtained on a deuterium fixed tar-

get from NMC, BCDMS and E665 data. The comparison
of these very accurate data with our results is shown on
Figs. 12, 13 and 14, respectively. The agreement is also
excellent, except for the very low Q2 region of E665, as
for the proton case. Finally the high statistics νN DIS
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Fig. 9. F p
2 (x, Q2) as a function of Q2 for fixed x, ZEUS data

[25,26]. The function c(xi) = 0.6(19 − i), i = 1 corresponds to
x = 6.3 × 10−5

data from CCFR allows one to extract the xF νN
3 (x,Q2)

structure function, which is successfully compared to our
results on Fig. 15. The heavy quark corrections are only
relevant in the small x region, where unfortunately the
experimental errors are large, but we have checked that
we get a contribution consistent with the data [28].

To complete our tests of the unpolarized parton distri-
butions, we must come back to the important question of
the flavor asymmetry of the light antiquarks. Our deter-
mination of ū(x,Q2) and d̄(x,Q2) is perfectly consistent
with the violation of the Gottfried sum rule, for which we
found IG = 0.2493 for Q2 = 4GeV2. Nevertheless there
remains an open problem with the x distribution of the
ratio d̄/ū for x ≥ 0.2. According to the Pauli principle this
ratio should be above 1 for any value of x. However, re-
cently the E866/NuSea Collaboration [33] has released the
final results corresponding to the analysis of their full data
set of Drell–Yan yields from an 800GeV/c proton beam
on hydrogen and deuterium targets and they obtain the
ratio d̄/ū shown in Fig. 16 for Q2 = 54GeV2. Although
the errors are rather large in the high x region, the statis-
tical approach disagrees with the trend of the data. How-
ever in the small x region, where the data are remarkably
precise, there is a good agreement with our predictions.
Clearly by increasing the number of free parameters, it is
possible to build up a scenario which leads to the drop off
of this ratio for x ≥ 0.2. For example this was achieved
in [37], as shown by the dashed curve in Fig. 16. There is

Fig. 10. F p
2 (x, Q2) as a function of Q2 for fixed x, c(x) =

0.6(ix − 0.4), ix = 1 → x = 0.32, rebinned data H1, ZEUS,
E665, NMC, BCDMS. (Presentation of data by courtesy of R.
Voss)

no such freedom in the statistical approach, since quark
and antiquark distributions are strongly related. One way
to clarify the situation is either to improve the statisti-
cal accuracy on the Drell–Yan yields, which seems rather
unlikely, or to call for the measurement of another ob-
servable sensitive to ū(x) and d̄(x). One possibility is the
ratio of the unpolarized cross sections for the production
of W+ and W− in pp collisions, which will directly probe
the behavior of the d̄(x)/ū(x) ratio. Let us recall that if
we denote RW (y) = (dσW+

/dy)/(dσW −
/dy), where y is

the W rapidity, we have [38] at the lowest order

RW (y,M2
W ) (25)

=
u(xa,M

2
W )d̄(xb,M

2
W ) + d̄(xa,M

2
W )u(xb,M

2
W )

d(xa,M2
W )ū(xb,M2

W ) + ū(xa,M2
W )d(xb,M2

W )
,

where xa = τ1/2ey, xb = τ1/2e−y and τ = M2
W /s. This ra-

tio RW , such that RW (y) = RW (−y), is accessible with a
good precision at RHIC-BNL [39] and at s1/2 = 500GeV
for y = 0, we have xa = xb = 0.16. So RW (0,M2

W ) probes
the d̄(x)/ū(x) ratio at x = 0.16. Much above this x value,
the accuracy of [33] becomes poor. In Fig. 17 we com-
pare the results for RW using two different calculations.
In both cases we take the u and d quark distributions ob-
tained from the present analysis, but first we use the ū and
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Fig. 11. Comparison of xG(x, Q2) at Q2 = 20–30GeV2

(dashed-solid) with experimental determination from NMC
[18], H1 [36] and ZEUS [24] experiments

Fig. 12. F d
2 (x, Q2) as a function of Q2 for fixed x, NMC data

[19]. The function c(xi) = 0.6(19 − i), i = 1 corresponds to
x = 4.5 × 10−3

Fig. 13. F d
2 (x, Q2) as a function of Q2 for fixed x, BCDMS

data [21]. The function c(xi) = 0.6(19− i), i = 1 corresponds
to x = 7 × 10−2

Fig. 14. F d
2 (x, Q2) as a function of Q2 for fixed x, E665 data

[22]. The function c(xi) = 0.6(19 − i), i = 1 corresponds to
x = 8.9 × 10−4
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Fig. 15. xF νN
3 (x, Q2) as a function of Q2 for fixed x, CCFR

data [28]. The function c(xi) = 0.6(19 − i), i = 1 corresponds
to x = 7.5 × 10−3

Fig. 16. Comparison of the data on d̄/ū(x, Q2) from
E866/NuSea at Q2 = 54GeV2 [33], with the prediction of the
statistical model (solid curve) and the set 1 of the parametriza-
tion proposed in [37] (dashed curve)

Fig. 17. Theoretical calculations for the ratio RW (y, M2
W ) ver-

sus the W rapidity, at two RHIC-BNL energies. The solid curve
(s1/2 = 500GeV) and the dashed curve (s1/2 = 200GeV) are
the statistical model predictions. The dotted curve (s1/2 =
500GeV) and the dashed-dotted curve (s1/2 = 200GeV) are
the predictions obtained using the d̄(x)/ū(x) ratio from [37]

d̄ distributions of the statistical approach (solid curve in
Fig. 16) and second the ū and d̄ from [37] (dashed curve in
Fig. 16). Notice that the energy scale M2

W is much higher
than in the E866/NuSea data, so one has to take into ac-
count the Q2 evolution. At s1/2 = 200GeV for y = 0,
we have xa = xb = 0.40 and, although the W± yield is
smaller at this energy, the effect on RW (0,M2

W ) is strongly
enhanced, as seen in Fig. 17. This excellent test must be
done in the near future.

4 Experimental tests for polarized DIS

Since our approach is based on the direct construction of
the quark and antiquark distributions of a given helicity
q±
i and q̄±

i , from the previous results we immediately ob-
tained ∆qi and ∆q̄i for each flavor. We display in Fig. 18
these distributions x∆f(x,Q2) versus x, atQ2 = 20GeV2,
after an NLO evolution. As we mentioned earlier, we took
∆G = ∆c = ∆c̄ = 0 at the input energy scale, but as
shown in the figure, this is no longer true after the Q2 evo-
lution. We notice that the distributions are positive for u,
ū and G and negative for d, d̄, s(s̄) and c, which remain ex-
tremely small. We have also checked that our ∆qi(x) sat-
isfy the positivity conditions at the leading twist level ob-
tained in [40]. Recently, the HERMES Collaboration has
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Fig. 18. The different polarized parton distributions (f = u,
d, ū, d̄, s(s̄), c and G) after NLO evolution, at Q2 = 20GeV2,
as a function of x

Fig. 19. HERMES data on (∆u+∆ū)/(u+ū), (∆d+∆d̄)/(d+
d̄), ∆qs/qs as a function of x at fixed Q2 = 2.5GeV2 [41]. The
curves are our model calculations. For the sea quarks ∆ū/ū
(solid curve), ∆d̄/d̄ (dashed curve) and ∆s/s (dotted curve)

Fig. 20. gp,d,n
1 (x, Q2) as a function of x for different Q2 val-

ues, from E155, E154, E143, SMC, HERMES experiments. The
curves correspond to our model predictions at Q2 = 5GeV2

presented new semi-inclusive data [41] with greater pre-
cision, which allows a good flavor separation to be made
of the light quarks, and these data are shown in Fig. 19.
However from this data analysis one cannot achieve a fla-
vor separation for the antiquarks, so∆qs/qs represents the
polarization of sea quarks assuming flavor symmetry, i.e.
∆qs/qs = ∆ū/ū = ∆d̄/d̄ = ∆s/s. Our model calculations
give a very good description of the u and d quark polariza-
tions as shown in the figure. The comparison between our
three curves ∆ū/ū, ∆d̄/d̄ and ∆s/s and the poor accuracy
sea quark data do not allow one to draw any conclusion.

In Fig. 20 we show a data compilation of the polar-
ized structure functions gp,d,n

1 (x,Q2) from different cur-
rent experiments on proton, deuterium and helium tar-
gets, evolved at a fixed value Q2 = 5GeV2. The x depen-
dence is in fair agreement with our results and we predict,
in the small x region, a fast rising behavior for gp

1 and a
fast decreasing behavior for gn

1 , due to the antiquark con-
tributions. This cannot be tested so far, due to the lack
of precise data. The Q2 dependence for fixed x values is
displayed in Figs. 21 and 22.

Here we would like to comment on the choice we made
for ∆s(x,Q2) (∆s̄) in (17). Clearly this polarized quark
distribution is very badly known and we have constrained
its first moment by assuming the validity of the second
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Fig. 21. 2ngp
1(x, Q2) as a function of Q2 for different x values.

n = 0 corresponds to x = 0.75 and n = 16 to x = 7.5 × 10−3.
Experimental data are rebinned to the nearest x values

Bjorken sum rule, namely

∆q8 = ∆u+∆ū+∆d+∆d̄ − 2(∆s+∆s̄) = 3F − D,
(26)

where F and D are the hyperon beta decay constants, so
that 3F −D = 0.579. At Q2 = 4GeV2, we have found for
the following first moments: ∆u = 0.6678, ∆ū = 0.0464,
∆d = −0.2576, ∆d̄ = −0.0865 and ∆s = ∆s̄ = −0.0443,
so ∆q8 = 0.547. Notice that the first Bjorken sum rule is
also very well satisfied, since we get IBj = 0.1764. It is in-
teresting to realize that the contribution of the antiquarks
to IBj, whose value in our case is 0.0221, is positive and
relatively large because ∆ū and ∆d̄ have the same signs
as ∆u and ∆d, respectively.

Finally we turn to the important issue of the large x
behavior of the polarized quark distributions. This kine-
matic region has been poorly explored experimentally so
far, but there are different theoretical scenarios [42], when
x is near 1, for the asymmetries Ap,d,n

1 (x,Q2), measured in
polarized DIS. We recall the definition of the asymmetry
A1(x,Q2), namely

A1(x,Q2) =
g1(x,Q2)
F2(x,Q2)

2x[1 +R(x,Q2)]
[1 + γ2(x,Q2)]

, (27)

where γ2(x,Q2) = 4M2x2/Q2 and R(x,Q2) is the ratio
between the longitudinal and transverse photoabsorption

Fig. 22. gn
1 (x, Q2) as a function of Q2 for different x values.

The function c(xi) = 19−i, i = 0 corresponds to x = 7.5×10−3.
Experimental data are rebinned to the nearest x values

cross sections. In the case where the u quark dominates,
we get

A1 ∼ ∆u(x,Q2)
u(x,Q2)

[1 +R(x,Q2)]
[1 + γ2(x,Q2)]

. (28)

When x → 1 for Q2 = 4GeV2, R is of the order of 0.30 or
less and γ2(x,Q2) is close to 1, so A1 ∼ 0.6∆u(x)/u(x). It
seems unlikely to find A1 → 1, unless one lets Q2 go to in-
finity or one violates positivity. We show in Fig. 23 a com-
pilation of the world data for Ap,n

1 (x,Q2) at Q2 = 4GeV2,
with the results of our calculations up to x = 1, where we
have ∆u/u = 0.77, ∆d/d = −0.46 and indeed we find
Ap,n

1 < 1. This specific prediction should be confronted
with the very accurate data on An

1 in the large x region
which is expected soon from Jefferson Lab [43].

5 Helicity asymmetries
for weak boson production at RHIC-BNL

Next we propose some tests of our PPD in hadronic colli-
sions in the framework of the spin program at RHIC-BNL
[39]. As we have seen in Sect. 3, the production of W± in
pp collisions is very relevant to probe the behavior of the
d̄(x)/ū(x) ratio and since W bosons are produced through
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Fig. 23. Compilation of the asymmetries Ap
1 and An

1 from
E155, E154, E142, E143, EMC, SMC and HERMES experi-
ments [44–46]. The curves correspond to our model predictions
at Q2 = 4GeV2

a pure V –A interaction, they are also an ideal tool to study
the spin structure of the nucleon.

Let us consider the parity-violating helicity asymmetry
APV

L (W ) defined as

APV
L (W ) =

dσW
− /dy − dσW

+ /dy
dσW− /dy + dσW

+ /dy
, (29)

where ± stands for the helicity of one polarized proton
beam. For W+, at the lowest order of the Drell–Yan pro-
duction mechanism, it reads [47]

APV
L (W+) (30)

=
∆u(xa,M

2
W )d̄(xb,M

2
W ) − ∆d̄(xa,M

2
W )u(xb,M

2
W )

u(xa,M2
W )d̄(xb,M2

W ) + d̄(xa,M2
W )u(xb,M2

W )
,

assuming the proton a is polarized. Here xa, xb are defined
as in (25) and for W− production one interchanges the
quark flavor u and d. The calculation of these asymmetries
is therefore very simple and the results using our PPD are
presented in Fig. 24 at s1/2 = 350GeV and 500GeV. The
asymmetries decrease for increasing energy and we recall
that higher-order corrections have very small effects on
these predictions [48]. The general trend of APV

L (W ) can
be easily understood and, for example at s1/2 = 500GeV
near y = +1, APV

L (W+) ∼ ∆u/u and APV
L (W−) ∼ ∆d/d,

evaluated at x = 0.435. Similarly for near y = −1,

Fig. 24. The parity-violating asymmetry APV
L for pp → W ±

production versus the W rapidity at s1/2 = 350GeV (dashed
curve) and s1/2 = 500GeV (solid curve)

Fig. 25. The parity-violating asymmetry APV
L for pp → Z0

production versus the Z0 rapidity at s1/2 = 350GeV (dashed
curve) and s1/2 = 500GeV (solid curve)

APV
L (W+) ∼ −∆d̄/d̄ and APV

L (W−) ∼ −∆ū/ū, evaluated
at x = 0.059. Given the expected rates for W± production
at RHIC-BNL and the high degree of the proton beam po-
larization [39], it will be possible to check these predictions
of the statistical approach to a high accuracy, in particular
for the flavor separation of the antiquarks polarized dis-
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Fig. 26. Parity-conserving double helicity asymmetry APC
LL for

pp → W ± production versus the W rapidity at s1/2 = 350GeV
(dashed curve) and s1/2 = 500GeV (solid curve)

tributions2. It will provide the first reliable determination
of ∆ū and ∆d̄. One can also consider the asymmetry APV

L
for the Z0 production whose expression is given in [47].
Our prediction for this asymmetry is displayed in Fig. 25,
but since the Z0 is not a pure left-handed object the inter-
pretation of the result in terms of the PPD is less obvious
than in the W± case. Moreover the Z0 production rate at
RHIC-BNL will be less copious, so the expected precision
will be reduced.

In pp collisions for W± production where both protons
beams are polarized, there is another observable which is
sensitive to the antiquark polarized distributions, that is
the parity-conserving double helicity asymmetry APC

LL (W )
defined as

APC
LL (W ) (31)

=
dσW

++/dy + dσW
−−/dy − dσW

+−/dy − dσW
−+/dy

dσW
++/dy + dσW−−/dy + dσW

+−/dy + dσW−+/dy
.

For W+ production it reads, at the lowest order [38]

APC
LL (W

+) (32)

= −∆u(xa, M2
W )∆d̄(xb, M

2
W ) + ∆d̄(xa, M2

W )∆u(xb, M
2
W )

u(xa, M2
W )d̄(xb, M2

W ) + d̄(xa, M2
W )u(xb, M2

W )
.

We simply notice that if the antiquarks are unpolarized,
i.e. ∆q̄i(x) = 0, it leads immediately to APC

LL (W
+) = 0.

Clearly APC
LL (W

+) is symmetric around y = 0 and one ob-
tains APC

LL (W
−) by interchanging the quark flavor u and

d. Given the signs of the PPD we have obtained in the

2 For alternative predictions see [49]

Fig. 27. Parity-conserving double helicity asymmetry APC
LL for

pp → Z0 production versus the Z0 rapidity at s1/2 = 350GeV
(dashed curve) and s1/2 = 500GeV (solid curve)

statistical approach, it is obvious that APC
LL (W

±) are pos-
itive in the y range we are considering, as shown in Fig. 26.
The asymmetries decrease for increasing energy but they
remain sizable even at the highest RHIC-BNL energy.

We have also calculated this asymmetry for Z0 pro-
duction and the results are presented in Fig. 27. The sign
change with respect to APC

LL (W
±) is due to the fact that

the expression of APC
LL (Z

0) [38] is driven by terms of the
type −∆u(xa)∆ū(xb) or −∆d(xa)∆d̄(xb), which are both
negative in the statistical approach.

Finally let us mention briefly a realistic possibility of
having polarized 3He at RHIC-BNL, which allows one to
consider pn collisions with polarized neutrons. The same
asymmetries can be calculated for this case and, in par-
ticular, we have checked that APV

L (W±) for p−→n collisions
is directly obtained from APV

L (W±) for p−→p collisions, by
exchanging W+ and W−, as a consequence of isospin sym-
metry. For −→p n collisions with only the proton beam po-
larized, the results are very close to those obtained for −→p p
collisions.

6 Concluding remarks

We have constructed a new set of polarized parton dis-
tributions in the framework of a statistical physical pic-
ture of the nucleon. The chiral properties of QCD lead
to simple relations between quark and antiquark distri-
butions. We have obtained a good description of all un-
polarized and polarized structure functions measured in
DIS, F p,d

2 (x,Q2), xF νN
3 (x,Q2) and gp,d,n

1 (x,Q2), in a wide
kinematic range, in terms of eight free parameters, a small
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number which could be reduced even further. We have
also proposed a simple expression for the gluon distribu-
tion G(x,Q2

0), at the input scale Q2
0, with no additional

free parameter. In view of the poor present knowledge of
the polarized gluon distribution we took ∆G(x,Q2

0) = 0.
Our analysis of the data was done by using a DGLAP
Q2 evolution at NLO, to get access to a broad kinematic
range of x and Q2. This approach predicts specific flavor-
symmetry breaking of the light antiquarks. First the in-
equality d̄(x,Q2) > ū(x,Q2), a natural consequence of
the Pauli principle, which is questioned for x > 0.2 by the
E866 experiment [33]. To answer this challenging issue, we
propose to measure the ratio of the unpolarized cross sec-
tions for the production of W+ and W− in pp collisions at
RHIC-BNL, for which we have a definite prediction. Sec-
ond, this approach leads to ∆ū > 0 and ∆d̄ < 0, so these
first moments of the light antiquarks distributions give a
positive contribution to the Bjorken sum rule. The precise
tests for the x and Q2 dependence of these distributions
will also be done at RHIC-BNL, by the measurements of
the helicity asymmetries in the W± and Z0 production,
which we have calculated. The strange quarks unpolarized
and polarized distributions, are constructed by means of
empirical expressions in terms of the light antiquark dis-
tributions, but this should be improved in the future with
some more fundamental arguments. We have also stressed
the relevance of the large x region for the light quark dis-
tributions and the behavior of our distributions can be
tested in current experiments at Jefferson Lab. Although
we still miss a deep understanding of all the features of
this approach, as well as a clear interpretation of some of
the outgoing parameters, we think it is very promising and
challenging in view of the future tests we have identified.

Note

We have a much larger comparison of our model pre-
dictions with DIS data, by means of many more figures,
which we could not include in this paper for lack of space.
The interested reader can consult the corresponding file
accessible at the following address: http://www.cpt.univ-
mrs.fr/preprints/2001-P.4205/4205-extrafig.pdf.
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37. A. Daleo, C.A. Garćıa Canal, G.A. Navarro, R. Sassot,
hep-ph/0106156

38. C. Bourrely, J. Soffer, Nucl. Phys. B 423, 329 (1994)
39. G. Bunce, N. Saito, J. Soffer, W. Vogelsang, Ann. Rev.

Nucl. Part. Scie. 50, 525 (2000)
40. J. Soffer, O. Teryaev, Phys. Lett. B 490, 106 (2000)
41. HERMES Collaboration, K. Ackerstaff et al., Phys. Lett.

B 404, 383 (1997); Phys. Lett. B 464, 123 (1999); A.
Airapetian et al., Phys. Lett. B 442, 484 (1998)

42. S.J. Brodsky, M. Burkardt, I. Schmidt, Nucl. Phys. B 441,
197 (1995); B.-Q. Ma, Phys. Lett. B 375, 320 (1996); N.
Isgur, Phys. Rev. D 59, 034013 (1999)

43. Experiment E94-110 at TJNAF, Z.-E. Meziani, P. Souder;
update to E99-117, Z.-E. Meziani, J.P. Chen, P. Souder

44. EMC Collaboration, J. Ashman et al., Phys. Lett. B 206,
364 (1988); Nucl. Phys. B 328, 1 (1989)

45. SLAC E142 Collaboration, P.L. Anthony et al., Phys. Rev.
D 54, 6620 (1996)

46. SLAC E143 Collaboration, K. Abe et al., Phys. Rev. Lett.
75, 25 (1995); Phys. Rev. D 58, 112003 (1998)

47. C. Bourrely, J. Soffer, Phys. Lett. B 314, 132 (1993)
48. B. Kamel, Phys. Rev. D 57, 6663 (1998); T. Gehrmann,

Nucl. Phys. B 534, 21 (1998)
49. B. Dressler et al., Eur. Phys. J. C 18, 719 (2001)


